SEO教程
IDF算法简介以及在自关键词优化动提取关键词方面的应用
2020-06-30

    除了自动提取关键词,TF-IDF算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的TF-IDF,将它们相加,就可以得到整个文档的TF-IDF。这个值最高的文档就是与搜索词最相关的文档。

    一个容易想到的思路,就是找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。于是,我们进行"词频"(Term Frequency,缩写为TF)统计。结果你肯定猜到了,出现次数最多的词是----"的"、"是"、"在"----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、"发展"、"方向"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?显然不是这样。因为"中国"是很常见的词,相对而言,"发展"和"方向"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"发展"和"方向"的重要程度要大于"中国",也就是说,在关键词排序上面,"发展"和"方向"应该排在"中国"的前面。所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。

    下面就是这个算法的细节。

    句子A:我喜欢看电视,不喜欢看电影

    "余弦相似度"是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

    TF-IDF算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。(一种解决方法是,对全文的第一段和每一段的第一句话,给予较大的权重。)

IDF算法简介以及在自关键词排名动提取关键词方面的应用


返回顶部